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1. INTRODUCTION

Moving least-squares methods for the interpolation of scattered data in
the plane are well known [6]. The simplest of them is known more com
monly as Shepard's method [5, 7]. The value of the interpolant at any
point is obtained from a weighted least-squares polynomial approximation
to the data, the weighting of a data point being inversely related to its
distance from the point at which the interpolant is being evalutated. In
Shepard's method, the polynomial is a constant.

The Backus-Gilbert theory [2] has been developed in a geophysical
context, but it is a theory of interpolation in that the values of a number
of functionals on an unknown function f are given, and an approximation
to the value of f at some point is required. The basic principle is to
optimize the approximation of the Dirac delta by a linear combination of
the representers of the given functionals.

Recently, Abramovici [1] showed that Shepard's method could be
obtained from the Backus-Gilbert theory. Here we will demonstrate that
all moving least-squares approximants can be generated from a slightly
modified Backus-Gilbert theory.

2. MOVING LEAST-SQUARES

Let M:= (n~m), i.e., the dimension of the space of polynomials of degree
at most m in n variables, and {CPI(X), CP2(X}, ..., CPM(X}} be the monomials
of degree at most m in n real variables. Suppose that we are given N ~ M
di<itinct points x j E IRn, not all of which lie on the zero set of a polynomial
of degree at most m. We approximate f: IRn ~ IR, at Xo E IRn, by the
weighted least-squares polynomial of degree m at the points XI' 1::::; i::::; N,
with weights W j := w(x; - xo}. Here w: IRn ~ IR +. Typically, w(x) = Ixl- k

267
0021-9045J89 S3.00

Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.



268 BOS AND SALKAUSKAS

for some even k although many other choices are possible. This particular
choice ensures that the approximation is actually an interpolant and also
has a certain smoothness (see Lancaster and Salkauskas [6]).

In order to obtain an explicit expression for this approximation, let
BTE [RNx M be the Vandermonde matrix of the monomials of degree at
most m evaluated at the points Xi' Specifically,

(2.1 )

Further, let W =diag(w 1, W2' ... , wN) E [RNXN, f= (f(xd, ...,j(xN)fE [RN,
and <P=(lfJl(XO),1fJ2(XO),oo., IfJM(xo)fE[RM. Thus the moving least-squares
approximation to f(x o) is 'L.:: 1 CilfJi(XO), where C E [RM minimizes

Under our assumptions, W is positive definite and B T is of full rank. Thus
C is the solution of the normal equations

and the approximation is therefore given by

M

L CilfJi(XO) = cT<p = fTWBT(BWBT)-I<p.
i= 1

(2.2)

(2.3 )

For further properties of moving least-squares approximations see, for
instance, [4, 6].

3. BACKUS-GILBERT OPTIMALITY

We give a brief, univariate account of those features of the Backus
Gilbert theory that apply to the problem at hand. It will be clear how this
can be extended to [Rn.

Let {Ai} ~= 1 be a linearly independent set of bounded linear functionals
on L 2 [a, b], and for some (unknown)fEL 2 [a, b] let the values of Ai(f),
1~ i ~ N, be given. It is required to obtain an approximation !(xo),
Xo E [a, b], in terms of this information. To this end we seek coefficients
ai(xO) such that I.;"~ 1 ai(xo) Ai(f) will in some sense be a good approxima
tion to f(x o)' Let {L i }~ 1 be the representers of the functionals Ai' Then
Wo(x) := I.;"~ 1 ai(xo) Li(x) is to be a good approximation to the Dirac
distribution, <5(x - x o). In order to measure the "deltaness" of Wo, Backus
and Gilbert propose that a symmetric, non-negative "sink function,"
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J(x, xo), vanishing only at x = xo, be selected, and that the a;'s be chosen
to minimize the "spread" of Wo:

S(Wo; xo):=rJ(x, xo) W~(x) dx.
a

(3.1 )

If J(x, xo) is chosen so as to increase as Ix - xol increases, then a Wo mini
mizing the spread will tend to have its relatively large values concentrated
near Xo' The choice J(x, xo) = (x - XO)2 is typical. Clearly, the spread is just
the square of a weighted L 2 norm of Woo

As well, since the approximation

!(xo) =rf(x) Wo(x) dx
a

(3.2)

can be seen as an average of f over [a, b], it is natural to impose the
condition

rWo(x)dx= 1,
a

(3.3 )

which certainly is also satisfied by J(x - xo).
Abramovici [1] has applied this to the case where the functionals A. i are

<5(x - Xi), and hence do not have representers. However, by working with
a certain <5-sequence of functions, he has shown that the approximation
!(xo) is identical to the Shepard interpolant. In the sequel, we apply this
technique with a broad class of <5-sequences. We do not require J(x, xo) to
vanish when x = Xo' In addition, since Wo is to approximate <5(x - xo), we
impose the conditions

bf xiWO(x) dx = x~,
a

O~i~m, m~N-1,

which forces the approximation to be exact for polynomials of degree up
to m. The resulting schemes are shown to be moving least-squares methods
of approximation, and are interpolants if J(x, xo) is chosen appropriately.

4. MOVING LEAST-SQUARES ARE BACKus-GILBERT OPTIMAL

Suppose that Xl' X 2 , ... , X N E IRn form a given set of points not all of
which lie on the zero set of any polynomial of degree m. Let Dc IRn be a
compact, connected set which contains all of the Xi in its interior. Select a
continuous J: W x IRn -+ IR + such that J(x, y) = 0 => x = y. Let L 2(D) be, as
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usual {J: D -+ IR IID j2(x) dx.< OCJ }, with the usual inner product <f, g) :=
IDf(x) g(x)dx. Further, for fixed xoED, let L2(D; J;xo)= {f: D-+IRI
IDJ(X, XO)f2(X) dx < OCJ}, with inner product <f, g)J:= ID J(x, xo)f(x)
g(x) dx, and associated norm II·IIJ' Now, as J is continuous, there is an
M>O such that IlfIIJ~MllfI12' and hence L 2(D)cL2(D;J;xo). Keeping
in mind the form of the approximationf(xo) of Eq. (3.2), we now make

DEFINITION 4.1. For xoED, WoEL2(D;J;xo), and fEC(D), the
Wo-approximation to f(x o) is given by

Now we wish our approximaton to be exact for polynomials of a given
degree.

DEFINITION 4.2. WoEL 2(D; J; xo) has degree of precision m if, for all
polynomials p, of degree at most m,

We set d m := {WoEL 2(D; J; xo)1 Wo has degree of precision m}.

As d m is the intersection of a finite number of hyperplanes, it is closed
and convex in L 2(D; J; xo).

The fragment of the Backus-Gilbert (abbreviated B-G in the sequel)
theory described in Section 3, shows that Wo is drawn from span{L; }~= l'

a finite-dimensional subspace of L 2 [a, b]. We insist on the same property
of Wo in our next definition.

DEFINITION 4.3. Let V c L 2(D) be a finite-dimensional subspace, and
fix mE 7L +. The approximation !(xo) = <f, Wo ) is B-G optimal of degree
m with respect to V if WoE V (") d m and II Woll J is a minimum. (In the
terminology of B-G, Wo has minimal spread.)

Note that the existence and uniqueness of such a Wo is guaranteed by
the fact that V (") d m is closed, convex, and finite-dimensional.

If this approximation to f(xo) is to be constructed in terms of informa
tion about f consisting of the values of a finite (say N) number of bounded,
linear functionals on L 2(D), with Riesz representers L 1 , ••• , L N EL2(D),
then Wo= L~= 1 aiL;, where the a/s satisfy linear constraints inherent in
Definition 4.2, and the minimization of II Woll J involves nothing more than
the minimization of a quadratic form with linear constraints-a standard
problem in linear algebra. Our aim is to examine the existence and nature
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of the approximation when the given information about f consists of
function values at distinct points of D. As Dirac delta functionals are
unbounded, this does not fit directly into our earlier B-G formulation.
However, as delta distributions are limits of ordinary functions we are able
to extend Definition 4.3 to include the notion of generalized B-G optimality
of degree m. For this we make use of certain delta sequences defined below.

DEFINITION 4.4. {A ,l(x) IA> O} is said to be a delta sequence if
lim,l~ooJlKlnf(x)A,l(x)dx=f(O) for any bounded f continuous at O. We
will say that the delta sequence is regular if, in addition, A;. E L1(lRn) and

1· f f( )AJx-a)A;.(x-b)d _{O1m x 1 x-
,l~oo IKln JlKlnA,l(x)dx f(a)

for any bounded f continuous at a.

if a;6b,

if a= b,

DEFINITION 4.5. Suppose that {Xl> ... , xN } cInt(D) are distinct points.
Let {A,l(x)IA>O} be a regular delta sequence, and set V(,l)=
span{A,l(x-xd, A,l(x-x1 ), ... , A,l(x-xN )}. Further, let W&,l)E V(,l)ndm

be B-G optimal of degree m. If f(xo) := lim,l ~ 00 J D f(x) W&,l)(x) dx exists
for allf EqD) we will say thatf(xo) is the generalized B-G approximation
of degree m to f(x o).

The use of regular delta sequences is not restrictive. In fact, the common
constructions of delta sequences are regular.

PROPOSITION 4.6. Suppose that K ELI (IRn) is bounded and is such that
JlKln K(x) dx = 1. Then {A,l(x) := AnK(Ax) IA>O} is a regular delta sequence.

Proof The fact that {A,l} is a delta sequence is standard (see for
instance [3, Sect. 3.2]). We must show that it is regular. Now as
KELj(W) is bounded, KEL1(lRn) and hence, an easy calculation shows
that A,l E L1(lRn). Further, A ~(x )/J IKln A ~(x) dx = AnK1(AX)/J IKln K1(x) dx and
so the same calculations that show that {A,l} is a delta sequence show that
{A ~/J IKln A ~ dx} is a delta sequence. Thus

if b = a.

Now if b;6 a, as we assume f to be bounded, it suffices to show that
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which in turn is implied by

lim f A,nIK(A,(x-a))K(A,(x-b))ldx=O.
A-+OO !R.n

To see this let 6> 0 be given. As K is bounded, there is a constant
M> 0 such that IK(x)1 ~ M. Choose R sufficiently large so that
Jlul;>R IK(u)1 dU~6/(2M). Then, upon letting u=A,(x-a),

t. A,nIK(A,(x-a))K(A,(x-b))1 dx

= t. IK(u)1 'IK(u + A,(a - b))1 du

=(t<:=R + t;>R) IK(u)I'IK(u+A,(a-b))1 du

~ {6/(2M)} M+ f IK(u)I'IK(u+A,(a-b))1 du
lui <:=R

{ }

1/2 { }1/2
~ 6/2 + f K 2

( u) du f K 2
( U + A,(a - b)) du .

lui <:=R lui <:=R

Now select L so large that for lui ~ L, Jlul;>L K 2(u) du < 6
2/4 JD;ln K 2(x) dx.

Then for A, sufficiently large, lu + A,(a - b)1 ~ L for all lui ~ Rand
so {Jlul <:= R K 2(u + A,(a - b)) du} 1/2 ~ {Jlul;> L K 2(u) du} 1/2 < 6/(21IKI12)' The
result now follows. I

We are now ready to state and prove our main result.

THEOREM 4.7. Moving least-squares approximations by polynomials of
degree m are generalized B-G optimal of degree m.

Proof We make use of the notation of Section 2. Recall that the B-G
approach is to approximate f(x o) by

where W6.l)(x):= L~~ I aj.l) L1.l(x - Xi)' The coefficients, aj.ll, are chosen so
that the spread, II W~.l)L is a minimum. We have added the requirement
that it reproduces all the polynomials of degree at most m, i.e.,

1~i~M. (4.1 )
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f J(x, XO)[WhA)(X)]2 dx = [a(A)V A (..1.)aU),
D
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1~i,j~N,

and a (A) E [RN is the coefficient vector. Note that as A (A) is a matrix of inner
products it is non-negative definite for all ..1. > O. Because of our assumption
that {J A} is regular, we may assume without loss of generality that A (A) is
strictly positive definite for all ..1. > O. Further, the constraints, (4.1), may be
expressed in matrix form as

where B(A)E [RMxN and BijA) = JD /p;(x).JA(x-xj ) dx.
The approximation is then

N

!A(XO) := L a~A) f(x i ) = fTa(A),
. i~1

where aU) E [RN minimizes [aU)V A(,l)aU ) subject to the constraint
B(A)a(,l)= <p. Note that Bij,l)=JD/Pi(X)JA(x-xj)dx=JlKln(XD(X)/Pi(X))
J A(X - xj ) dx ~ /Pi(Xj ) as ..1. -+ 00. Hence

lim BU)=B
A_ 00

(of (2.1)), (4.2)

which by our assumptions is of full rank. Thus we may, without loss of
generality, assume that BU) is of full rank. We now have a standard
problem in linear algebra, whose solution is given by

LEMMA 4.8. The a E [RN for which B(,lla = <p and aTA (.I·)a is a minimum is
given by

(4.3 )

For convenience we have suppressed the A. superscript.

Proof As A -I is also positive definite and B is of full rank, an easy
argument shows that BA -IB T is non-singular. Now suppose that x E [RN is
such that Ex = <po Then x TAx = (x - a)T A(x - a) + 2a TA(x - a) + aTAa.
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aTA(x - a) = fPT(BA -IBT)-1 BA -IA(x - A -IBT(BA -IBT)-lfP)

=fPT(BA -IBT)-I(Bx -fP)

=fPTO=O.

Hence

We now compute limA.~oo a(A.), where a(A.) is given by (4.3). We may write

where K:= SIKl" L1~(x) dx. First consider A(A.)/K.

,lim (I/K)A~:)=,lim (I/K)J J(x,xo)L1~(x-xi)dx
A--OO A_oo D

as {L1 A.} is regular.

Also, for j =I- i,

lim (I/K) A ijA.) = lim (I/K)] J(x,Xo)K(A(X-xi))K(A(X-x;))dx
il.~oo ).-+00 D

= 0 again by the regularity of {L1 A.}'

Hence Iimhoo (1/K) A(A.) = diag(J(x 1 , xo), ..., J(x N, xo)). Set W:=
diag(J-1(x 1 , xo), ...,J-I(XN , xo)) =limA. ~ 00 {(I/K) A(A.)} -I.

We have already seen that limA.~oo B(A.)=B (of (2.1)). Hence

lim a(A.) = WBT(BWBT)-l fP
A. ~ 00

and

lim fix Q ) = fTa = fTWBT(BWBT)-1 fP.
A.~OO

(4.4 )

Comparing (4.4) with (2.3) we see that the Backus-Gilbert approximation
is exactly moving least-squares with weights Wi = l/J(x i , xo)· I
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